First trials on universal cancer vaccine
By just changing the RNA inside those darts, the team can, in theory, mobilise the immune system against any kind of cancer.
Scientists just took a big, “very positive” step towards developing what could be the first “universal cancer vaccine”.
The results from early trials in humans, along with research in mice, have just been published, and they suggest that the new technique could be used to activate patients’ immune systems against any type of tumour, no matter where it is in the body.
Unlike the vaccines we’re familiar with, this potential vaccine would be given to patients who already have cancer, rather than those at risk of getting it. It basically works by shooting tiny ‘darts’ containing pieces of RNA extracted from the patient’s cancer cells at the body’s own immune system, convincing them to launch an all-out attack on any tumours they come across.
By just changing the RNA inside those darts, the team can, in theory, mobilise the immune system against any kind of cancer. “Such vaccines are fast and inexpensive to produce, and virtually any tumour antigen can be encoded by RNA,” the team, led by researchers at Johannes Gutenberg University of Mainz in Germany, reports in Nature.
“Thus, the nanoparticulate RNA immunotherapy approach introduced here may be regarded as a universally applicable novel vaccine class for cancer immunotherapy.”
Immunotherapy, which involves using the patient’s own immune system to attack cancer, isn’t in itself new — researchers are already using it against different cancer types with great results.
But until now, researchers have mostly done this by genetically engineering special, cancer-targeting immune cells in the lab, and then injecting them back into a patient — which is a time-consuming and expensive process.
The difference with this technique is that the vaccine is made in the lab, and it introduces the cancer DNA into the immune cells within the body, which is a lot less invasive. It also means that the vaccine can be tweaked to hunt a range of cancer types.
Source: www.sciencealert.com